Skip to main content Skip to main navigation Skip to page-level navigation Go to the Disability Resource Centre Website Go to the DRC Booking Accommodation Portal Go to the Inclusive Technology Lab Website
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia Okanagan campus
UBC Okanagan News
  • Research
  • People
    • Student Profile
    • Faculty Profile
    • Alumni Spotlight
  • Campus Life
    • Campus News
    • Student Life
    • Teaching & Learning
  • Community Engagement
  • About the Collection
    • Stories for Media
  • UBCO Events
  • Search All Stories
Home / 2018 / April / 23 / New research modernizes rammed earth construction
Research

New research modernizes rammed earth construction

April 23, 2018

Engineering professor Sumi Siddiqua (right) and graduate student Priscila Barreto (left).

Engineering professor Sumi Siddiqua (right) and graduate student Priscila Barreto (left).

Chemical treatment improves strength of compressed soil by 25 times

A building method as old as dirt is being re-examined as a ‘new’ and viable modern construction material.

Compressed soil, also known as rammed earth, is a method of construction that dates back centuries. UBC Okanagan engineering professor Sumi Siddiqua, who has been researching the resurgence in rammed earth, says conventional cement is still the go-to for modern engineers.

“Conventional cement construction is the principal building material for buildings, roads, pipelines and bridges around the world,” says Siddiqua. “But builders today are seeking cheaper and more environmentally responsible construction materials. One such material may be compressed—or rammed—earth.”

Soil can be used in many ways, explains Siddiqui, including rammed earth walls, earth bricks and compressed earth blocks. In 2014, nearly 40 per cent of the world’s population still lived or worked in structures using soil as a construction material. The benefits of using these natural and locally-sourced materials include a reduction in costs and in energy consumption.

The rammed earth walls are usually placed between molds and bound by clay. But Siddiqua says while the technique is simple, it has significant structural limitations.

To improve this, Siddiqua and her graduate student Priscila Barreto tested the addition of calcium carbide residue and fly ash as binding agents in the rammed earth. They found that when cured for 60 days, the walls containing binding agents were 25 times stronger than those without. The increased strength greatly improves their potential for use in modern construction.

“The core of our challenge was to pinpoint the strongest composition of binding materials,” says Siddiqua. “While research shows that some amount of clay is required to stabilize soils, having a mechanism to better bind the soil grains is the key.”

Barreto, an international student from Brazil, began this research while at UBC Okanagan as an undergraduate and continued the work into her graduate studies.

“In countries like Brazil and regions like the Sertão in the country’s northeast, rammed earth is commonly used as a building technique,” explains Barreto. “The opportunity to enable people to build stronger and safer structures with natural soil is one of my central motivations for doing this research.”

Siddiqua says there is clearly a demand for this type of material and the technique has been used in small cities in Canada, including the Okanagan, where small residential homes are being built with readily available materials.

“We targeted rammed earth structures because local construction engineers have approached us looking to improve traditional rammed earth structures with stabilization techniques like ours.”

The research was published in the journal Construction and Building Materials, and was supported by both a Discovery and ENGAGE Grant from the Natural Sciences and Engineering Council of Canada.

Media Contact

Nathan Skolski
Associate Director, Public Affairs
University Relations

The University of British Columbia
Okanagan campus
Tel: 250 807 9926
E-mail: nathan.skolski@ubc.ca

Content type: Media Release
More content from: School of Engineering

Trending Stories

  • UBC Okanagan student residence receives Passive House certification
  • Every dog can have its day, even online
  • Old DNA provides new insights for national park’s salmon ...
  • Research with Altitude
  • New research suggests ways to get men to open ...
All Stories
Contact Media Relations

About UBC Okanagan

UBC’s Okanagan campus is an innovative hub for research and learning founded in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose traditional, ancestral and unceded territory the campus resides. The most established and influential global rankings all consistently place UBC in the top five per cent of universities in the world, and among the top three Canadian universities.

The Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley. For more visit ok.ubc.ca.

Discover more about UBC Okanagan

Find a Program Admissions Book a Tour UBCO Facts
UBC Okanagan Campus News, University Relations

Innovation Precinct Annexation 1 (IA1)
3505 Spectrum Court
Kelowna, BC Canada V1V 2Z1

We respectfully acknowledge the Syilx Okanagan Nation and their peoples, in whose traditional, ancestral, unceded territory UBC Okanagan is situated.

 

Search all stories

Subscribe to receive news by email

Visit UBC's Vancouver news room

Global and Admin Messages

News

Okanagan Campus

UBC Okanagan News
Okanagan Campus
3333 University Way
Kelowna, BC Canada V1V 1V7
Find us on
  
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • Copyright |
  • Accessibility