Skip to main content Skip to main navigation Skip to page-level navigation Go to the Disability Resource Centre Website Go to the DRC Booking Accommodation Portal Go to the Inclusive Technology Lab Website
The University of British Columbia
The University of British Columbia Okanagan campus
UBC Okanagan News
  • Research
  • People
    • Student Profile
    • Faculty Profile
    • Alumni Spotlight
  • Campus Life
    • Campus News
    • Student Life
    • Teaching & Learning
  • Community Engagement
  • About the Collection
    • Stories for Media
  • UBCO Events
  • Search All Stories
Home / 2018 / July / 11 / UBC Okanagan research makes boating more efficient
Policy & Social Change, Research

UBC Okanagan research makes boating more efficient

July 11, 2018

Engineering Assistant Professor Kevin Golovin observes water pooling on a superhydrophobic surface.

Engineering Assistant Professor Kevin Golovin observes water pooling on a superhydrophobic surface.

Superhydrophobic surfaces cut down on drag and make boats and more environmentally friendly

Boats that travel through the water, but don’t get wet. That’s the idea behind new research from UBC’s Okanagan campus that aims to make boats more efficient by creating superhydrophobic—or extremely water-repellent—surfaces.

In 2013, the Canadian marine sector emitted 5.5 megatonnes of carbon dioxide, according to Transport Canada. The vast majority of these emissions arose from burning fossil fuels to propel marine vessels.

As a result, boat manufacturers are exploring ways to limit drag by coating a ship’s hull in superhydrophobic materials.

“Superhydrophobic materials can make future marine vehicles drastically more efficient since over 60 per cent of fuel is used to overcome the friction of dragging a ship through water,” says Engineering Assistant Professor Kevin Golovin, one of the study lead authors. “In fact, we were able to create a surface that reduced that friction by over 50 per cent.”

Golovin and his team studied several different combinations of superhydrophobic surfaces in highly turbulent conditions, similar to what boats might experience when travelling through the water. The best surfaces were those that were slightly rough.

Superhydrophobic work because they contain very small holes, like divots in a golf ball. Those small pores entrap a layer of air and can significantly reduce drag, a phenomenon that Golovin says can be counterintuitive.

“Typically, it’s very smooth surfaces that have the lowest drag,” says Golovin. “Intentionally adding roughness to reduce drag is a very different approach. But the key to our study was finding the perfect balance between keeping the surface as smooth as possible while at the same time adding enough surface features to make it superhydrophobic.”

“I think we found that balance and it could be a huge benefit to future hull design.”

The study was published in the Journal of Fluid Mechanics with funding from the US Office of Naval Research.

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world. For more visit ok.ubc.ca.

Media Contact

Nathan Skolski
E-mail: nathan.skolski@ubc.ca

Content type: Media Release
More content from: School of Engineering

Trending Stories

  • How one student connects AI innovation to wildfire research
  • Robotics, AI advancing wildfire, agricultural research at UBCO
  • Psychedelic mushroom microdoses can improve mood, mental health
  • UBCO professor researches electric passenger light rail for Okanagan Valley
  • Made in Canada breakthrough is a gamechanger in heart valve technology
All Stories
Contact Media Relations

About UBC Okanagan

UBC’s Okanagan campus is an innovative hub for research and learning founded in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose traditional, ancestral and unceded territory the campus resides. The most established and influential global rankings all consistently place UBC in the top five per cent of universities in the world, and among the top three Canadian universities.

The Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley. For more visit ok.ubc.ca.

Discover more about UBC Okanagan

Find a Program Admissions Book a Tour UBCO Facts
UBC Okanagan Campus News, University Relations

Innovation Precinct Annexation 1 (IA1)
3505 Spectrum Court
Kelowna, BC Canada V1V 2Z1

We respectfully acknowledge the Syilx Okanagan Nation and their peoples, in whose traditional, ancestral, unceded territory UBC Okanagan is situated.

 

Search all stories

Subscribe to receive news by email

Visit UBC's Vancouver news room

Global and Admin Messages

News

Okanagan Campus

TikTok icon Linkedin icon

UBC Okanagan News
Okanagan Campus
3333 University Way
Kelowna, BC Canada V1V 1V7
Find us on
  
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • Copyright |
  • Accessibility