Skip to main content Skip to main navigation Skip to page-level navigation Go to the Disability Resource Centre Website Go to the DRC Booking Accommodation Portal Go to the Inclusive Technology Lab Website
The University of British Columbia
The University of British Columbia Okanagan campus
UBC Okanagan News
  • Research
  • People
    • Student Profile
    • Faculty Profile
    • Alumni Spotlight
  • Campus Life
    • Campus News
    • Student Life
    • Teaching & Learning
  • Community Engagement
  • About the Collection
    • Stories for Media
  • UBCO Events
  • Search All Stories
Home / 2023 / July / 25 / UBCO researchers recover vital resources from wastewater sludge
Engineering & Technology, Research

UBCO researchers recover vital resources from wastewater sludge

New technique can extract and recycle phosphorous from municipal waste

July 25, 2023

A photo of a water treatment plant

UBC Okanagan researchers have developed a cost-effective method to extract phosphorous—a non-renewable but essential element for life—from municipal wastewater sludge.

At first glance when one looks at sewage sludge it can be challenging to find any redeemable value. However, researchers at UBC’s Bioreactor Technology Group see it in a whole other way.

Using a combination of heat, water and phase separation, these researchers have developed a cost-effective method to concentrate phosphorous—which can be efficiently recovered by extraction—from wastewater sludge.

“Phosphorous is a non-renewable, but essential, element for life and has many industrial uses,” explains Huan Liu, a doctoral student with UBCO’s School of Engineering and lead author of a new study investigating this method.

Phosphorus is a natural mineral and crucial for a person’s good health, but it is also essential to food security as it is used worldwide as a commercial fertilizer, explains Liu. However, it is listed as a critical raw material because many countries rely on imports for their supply.

“The uneven distribution of phosphate rock has created political and economic risks,” he says. “On the other hand, phosphorus discharge from waste sources, such as wastewater, is a major contributor to aquatic eutrophication, causing severe environmental challenges including algae blooms and dead zones in lakes.”

Liu along with supervisor and Principal Investigator Dr. Cigdem Eskicioglu are investigating a promising process that integrates hydrothermal liquefaction.

The process converts organic components of the municipal wastewater sludge into a petroleum-like biocrude and concentrates the phosphorous into a solid residue called hydrochar. This hydrochar can have a total phosphorus about 100 times higher than that of raw sludge, making it comparable to the phosphate rock used in commercial fertilizers.

Liu describes the extraction process as mirroring what happens when you mix minerals and acids.

“We were able to identify, for the first time, the kinetic reactions of phosphorus leaching from hydrochar to optimize the recovery of useful materials, such as what is needed for fertilizer,” says Liu.

According to Dr. Eskicioglu, their latest findings are important for wastewater utilities aiming to develop a process to recover usable nutrients from the system.

“At a time when we are seeking to be more sustainable and looking for alternative fuels, extruding useable materials from waste is essential,” she says. “Recovery and recycling is the solution that also provides the double benefit of providing a secondary source of phosphorus that can be globally distributed and also help with environmental conservation.”

This latest study appears in the journal Water Research, and was funded by the Natural Sciences and Engineering Research Council of Canada and the Metro Vancouver Industrial Research Chair Program in Advanced Resource Recovery from Wastewater. Liu also conducted six months of studies in France in collaboration with Dr. Ange Nzihou’s team at the Research Centre for Particulate Solids, Energy and Environment at the IMT Mines Albi-Carmaux engineering school.

Media Contact

David Bidwell
Writer/Content Strategist
University Relations

Tel: 2508083042
E-mail: david.bidwell@ubc.ca

Content type: Media Release
More content from: College of Graduate Studies, School of Engineering

Trending Stories

  • How one student connects AI innovation to wildfire research
  • Robotics, AI advancing wildfire, agricultural research at UBCO
  • Psychedelic mushroom microdoses can improve mood, mental health
  • UBCO professor researches electric passenger light rail for Okanagan Valley
  • Putting community, students and research on the same track
All Stories
Contact Media Relations

About UBC Okanagan

UBC’s Okanagan campus is an innovative hub for research and learning founded in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose traditional, ancestral and unceded territory the campus resides. The most established and influential global rankings all consistently place UBC in the top five per cent of universities in the world, and among the top three Canadian universities.

The Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley. For more visit ok.ubc.ca.

Discover more about UBC Okanagan

Find a Program Admissions Book a Tour UBCO Facts
UBC Okanagan Campus News, University Relations

Innovation Precinct Annexation 1 (IA1)
3505 Spectrum Court
Kelowna, BC Canada V1V 2Z1

We respectfully acknowledge the Syilx Okanagan Nation and their peoples, in whose traditional, ancestral, unceded territory UBC Okanagan is situated.

 

Search all stories

Subscribe to receive news by email

Visit UBC's Vancouver news room

Global and Admin Messages

News

Okanagan Campus

TikTok icon Linkedin icon

UBC Okanagan News
Okanagan Campus
3333 University Way
Kelowna, BC Canada V1V 1V7
Find us on
  
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • Copyright |
  • Accessibility