Skip to main content Skip to main navigation Skip to page-level navigation Go to the Disability Resource Centre Website Go to the DRC Booking Accommodation Portal Go to the Inclusive Technology Lab Website
The University of British Columbia
The University of British Columbia Okanagan campus
UBC Okanagan News
  • Research
  • People
    • Student Profile
    • Faculty Profile
    • Alumni Spotlight
  • Campus Life
    • Campus News
    • Student Life
    • Teaching & Learning
  • Community Engagement
  • About the Collection
    • Stories for Media
  • UBCO Events
  • Search All Stories
Home / 2023 / October / 19 / Advanced wildfire research could save billions, protect vital power supply
Engineering & Technology, Environment & Sustainability, Research, Science

Advanced wildfire research could save billions, protect vital power supply

UBCO researchers join international team to improve fire prediction modelling, especially for western North American power grid

October 19, 2023

A photo of power lines being threatened by fires

UBC Okanagan researchers Dr. John Braun and Dr. Kevin Hanna are among the first to join the newly created US-Canada Centre on Climate-Resilient Western Interconnected Grid. Their research is designed to protect infrastructure vital to 14 western states, BC and Alberta.

Wildfire modelling has advanced enough in the past 10 years that UBC Okanagan researchers say devastating losses like those witnessed in Fort McMurray, Alta., could become easier to prevent.

Dr. John Braun and Dr. Kevin Hanna are among the first to join the newly created US-Canada Centre on Climate-Resilient Western Interconnected Grid. Their work is helping highlight the need for improved wildfire prediction models and eventually establish better data access to mitigate or prevent damage to vital North American infrastructure.

“Today’s technology allows us to gather much more high-quality data than even a decade ago,” says Dr. Braun, a Professor of Mathematics and Statistics in UBC Okanagan’s Irving K. Barber Faculty of Science.

Heightened consideration of topography and advanced data collection tools such as satellites and drones can significantly enhance fire models and help determine fire spread rates, especially in alpine areas, he says. Correctly accounting for this can substantially augment fire models’ accuracy, allowing for more effective and timely firefighting strategies and infrastructural safety assessments.

Dr. Braun’s research, focusing on fire spread models, explores stochastic models that consider uncertainty. These can offer a more reliable range of predictions than deterministic models, which offer one likely conclusion. He cites the 2016 Fort McMurray fire, where advanced stochastic models could have significantly improved decision-making and resource allocation, potentially averting extensive damage and loss.

The Fort McMurray fire is still Canada’s most costly disaster and left behind $9.9 billion worth of damage. It destroyed 2,400 homes and forced 88,000 people to evacuate. During the emergency, a turning point for firefighters came as the blaze jumped a river and looked like it could pose an immediate threat to the city itself.

Officials used a deterministic model and estimated flames could reach city limits by 11 pm. That led them to divert resources to where they were needed most at the time. Dr. Braun says they may have reconsidered this decision if they’d had access to today’s tools.

“Initial calculations showed a five per cent probability that the fire could reach the city limits by 6 or 7 pm—which is actually about when it did,” Dr. Braun says. “If they had known this, they might have made a different decision. These models serve as essential decision support tools, improving both infrastructure safety and firefighting efforts.”

The researchers are also aiming to further risk and vulnerability assessments used in planning projects. Dr. Hanna is examining the specific information that regulators need for approving power projects in Canada. Their research seeks to establish robust processes for assessing risk and safety points along electric transmission routes, ensuring they withstand the impact of sudden events like wildfires.

“This project provides a unique platform to unify various research disciplines for addressing energy resiliency and security in the face of evolving climate challenges,” says Dr. Hanna, an Associate Professor in Earth Sciences and Director of UBC’s Centre for Environmental Assessment Research.

The centre has received US$5 million from the US National Science Foundation and C$3.75 million from the Natural Sciences and Engineering Research Council of Canada. It involves 11 North American universities and institutes that aim to address the growing challenges of wildfires, heatwaves, drought and flooding.

Such extreme weather events not only endanger lives and the environment but also threaten the grid providing power to millions of people across two Canadian provinces and 14 western states. The western interconnected grid stretches from the northern edge of British Columbia to the Mexico border, and from the California coast to the Rockies. It serves roughly 80 million people over 4.66 million square kilometres.

“This will help safeguard infrastructure, particularly power lines and natural gas systems, and potentially save billions in damage and replacement costs,” Dr. Hanna says.

Media Contact

Patty Wellborn
E-mail: patty.wellborn@ubc.ca

Content type: Media Release
More content from: Computer Science, Mathematics, Physics, and Statistics, Earth, Environmental and Geographic Sciences, Irving K Barber Faculty of Science

Trending Stories

  • UBCO researchers create 3D-printed living lung tissue
  • From textbooks to tissue models
  • How one student connects AI innovation to wildfire research
  • Psychedelic mushroom microdoses can improve mood, mental health
  • From medical school to medical leadership
All Stories
Contact Media Relations

About UBC Okanagan

UBC’s Okanagan campus is an innovative hub for research and learning founded in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose traditional, ancestral and unceded territory the campus resides. The most established and influential global rankings all consistently place UBC in the top five per cent of universities in the world, and among the top three Canadian universities.

The Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley. For more visit ok.ubc.ca.

Discover more about UBC Okanagan

Find a Program Admissions Book a Tour UBCO Facts
UBC Okanagan Campus News, University Relations

Innovation Precinct Annexation 1 (IA1)
3505 Spectrum Court
Kelowna, BC Canada V1V 2Z1

We respectfully acknowledge the Syilx Okanagan Nation and their peoples, in whose traditional, ancestral, unceded territory UBC Okanagan is situated.

 

Search all stories

Subscribe to receive news by email

Visit UBC's Vancouver news room

Global and Admin Messages

News

Okanagan Campus

TikTok icon Linkedin icon

UBC Okanagan News
Okanagan Campus
3333 University Way
Kelowna, BC Canada V1V 1V7
Find us on
  
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • Copyright |
  • Accessibility