Skip to main content Skip to main navigation Skip to page-level navigation Go to the Disability Resource Centre Website Go to the DRC Booking Accommodation Portal Go to the Inclusive Technology Lab Website
The University of British Columbia
The University of British Columbia Okanagan campus
UBC Okanagan News
  • Research
  • People
    • Student Profile
    • Faculty Profile
    • Alumni Spotlight
  • Campus Life
    • Campus News
    • Student Life
    • Teaching & Learning
  • Community Engagement
  • About the Collection
    • Stories for Media
  • UBCO Events
  • Search All Stories
Home / 2018 / January / 11 / New research finds that mould can infiltrate and weaken bio-composite materials
Research

New research finds that mould can infiltrate and weaken bio-composite materials

January 11, 2018

UBC researcher Bryn Crawford holds a sample sheet made with flax bio-waste. The black spots on the sheet indicate mould growth.

UBC researcher Bryn Crawford holds a sample sheet made with flax bio-waste. The black spots on the sheet indicate mould growth.

Mould on a substance will affect its strength and durability

When something goes mouldy in the fridge, it is annoying and wasteful.

However, at UBC Okanagan’s School of Engineering, mould is proving increasingly important in the domain of engineering materials and can lead to early deterioration and structural failure. This is especially the case as manufacturers adopt more bio-derived materials in the drive towards a greener future, explains researcher Bryn Crawford.

At UBC’s Okanagan campus, a multi-disciplinary team of researchers from the Composites Research Network and the Department of Biology, in collaboration with MIT and the National Research Council of Canada, have been studying the development and application of bio-sourced composites—specifically flax and hemp fibres. These materials are plentiful in Canada and can be mixed with other materials to create cheaper, recyclable, and effective composite material products that are used by a range of industries, including in transportation.

“Canada has a lot of biomass that can be used to produce materials that are both light and inexpensive,” explains Crawford. “We’re looking at ways of using biomass in engineering, but there is a level of natural deterioration in these products that is still not fully understood.”

In the study, researchers conducted a number of experiments to determine if and when mould will grow on bio-materials and how it might affect the final product.

“When we bring microbiology into engineering, it raises some extra questions; some questions we’ve never thought about before,” says Crawford. “But because we’re now using biological matter, we have to think of fungal growth and how this fungal growth will affect a product.”

The research team examined flax and hemp fibres alongside other natural materials to determine what would happen over time to these fibres. They created ‘fibre sheets’ and then added fungi to some, water to others, and left another group of sheets untreated.

Crawford says they are not surprised that the materials grew mould; the idea of the project was to determine the types of environment where the fungal spores would grow and then test mechanical properties of the affected materials. The team conducted a variety of tests examining them for strength, stiffness, or the amount of energy that can be absorbed before the materials failed. They also used scanning electron microscopy to take an extreme close-up of the interior of the sample to determine fungal growth patterns, examine fractures, and failure zones.

“It was a huge experiment and we found that in both the hemp and flax fibres, when no fungi were added, we still had fungi growing,” Crawford adds. “Basically, when raw natural fibres are exposed to high relative humidity, mould will grow and the potential for premature structural failure can occur.”

Crawford says that this susceptibility to mould growth is important for supply chains and factories to understand and manage in order to ensure they’re creating robust products.

“Bio-composites made from natural fibres are good for both the environment and the economy and could help usher in the next revolution in manufacturing. More inter-disciplinary research of this kind is vital to producing high-quality and durable bio-materials that help make that leap.”

The research was recently published in Materials and was partially funded by the Natural Sciences and Engineering Research Council of Canada and the Fonds de recherche du Québec—Nature et technologies. It was conducted in collaboration with Sepideh Pakpour, Negin Kazemian, John Klironomos, Karen Stoeffler, Denis Rho, Joanne Denault and Abbas Milani.

About UBC’s Okanagan campus

UBC’s Okanagan campus is an innovative hub for research and learning in the heart of British Columbia’s stunning Okanagan Valley. Ranked among the top 20 public universities in the world, UBC is home to bold thinking and discoveries that make a difference. Established in 2005, the Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world. For more visit ok.ubc.ca.

Media Contact

Nathan Skolski
E-mail: nathan.skolski@ubc.ca

Content type: Media Release
More content from: Biology, Faculty of Management, Irving K Barber School of Arts and Sciences (prior July 2020), School of Engineering

Trending Stories

  • How one student connects AI innovation to wildfire research
  • Robotics, AI advancing wildfire, agricultural research at UBCO
  • Psychedelic mushroom microdoses can improve mood, mental health
  • UBCO professor researches electric passenger light rail for Okanagan Valley
  • Made in Canada breakthrough is a gamechanger in heart valve technology
All Stories
Contact Media Relations

About UBC Okanagan

UBC’s Okanagan campus is an innovative hub for research and learning founded in partnership with local Indigenous peoples, the Syilx Okanagan Nation, in whose traditional, ancestral and unceded territory the campus resides. The most established and influential global rankings all consistently place UBC in the top five per cent of universities in the world, and among the top three Canadian universities.

The Okanagan campus combines a globally recognized UBC education with a tight-knit and entrepreneurial community that welcomes students and faculty from around the world in British Columbia’s stunning Okanagan Valley. For more visit ok.ubc.ca.

Discover more about UBC Okanagan

Find a Program Admissions Book a Tour UBCO Facts
UBC Okanagan Campus News, University Relations

Innovation Precinct Annexation 1 (IA1)
3505 Spectrum Court
Kelowna, BC Canada V1V 2Z1

We respectfully acknowledge the Syilx Okanagan Nation and their peoples, in whose traditional, ancestral, unceded territory UBC Okanagan is situated.

 

Search all stories

Subscribe to receive news by email

Visit UBC's Vancouver news room

Global and Admin Messages

News

Okanagan Campus

TikTok icon Linkedin icon

UBC Okanagan News
Okanagan Campus
3333 University Way
Kelowna, BC Canada V1V 1V7
Find us on
  
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • Copyright |
  • Accessibility